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We consider the statistically homogeneous motion that is generated by buoyancy 
forces after the creation of homogeneous random fluctuations in the density of 
infinite fluid at an initial instant. The mean density is uniform, and density 
fluctuations are smoothed by molecular diffusion. This turbulent flow system has 
interesting properties, and shows how self-generated motion contributes to the rate 
of mixing of an ‘active’ scalar contaminant. 

If nonlinear terms in the governing equations are negligible, there is an exact 
solution which shows that the history of the motion depends crucially on the form 
of the buoyancy spectrum near zero wavenumber magnitude ( K ) .  According to  this 
solution the Reynolds number of the motion increases indefinitely, so the linear 
equations do not remain valid. There are indications of similar behaviour when the 
nonlinear terms are retained. The value of the three-dimensional buoyancy spectrum 
function at K = 0 is shown to be independent of time, and this points to the existence 
of a similarity state of turbulence with decreasing mean-square velocity but 
increasing Reynolds number at large times. 

We have made a numerical simulation of the flow field and have obtained the 
mean-square velocity and density fluctuations and the associated spectra as 
functions of time for various initial conditions. An estimate of the time required for 
the mean-square density fluctuation to fall to a specified small value is found. The 
expected similarity state at large times is confirmed by the numerical simulation, and 
there are indications of a second similarity state which develops asymptotically when 
the buoyancy spectrum is zero at K = 0. The analytical and numerical results 
together give a comprehensive description of the birth, life and lingering death of 
buoyancy-generated turbulence. 

1. Introduction 
If a random and statistically homogeneous distribution of density of fluid of 

infinite extent is created by some means, a random and statistically homogeneous 
motion of the fluid is subsequently generated by buoyancy forces. This motion is 
resisted by viscous stresses, and the density variation is smoothed by molecular 
diffusion of the scalar property of the fluid that is associated with the density (e.g. 
temperature, concentration of solute) ; and there are nonlinear effects which generate 
both larger- and smaller-scale components of the scalar quantity and so affect the 
rate of smoothing. If the Reynolds number of the motion is large, the motion will be 
turbulent in the ordinary sense of inertia forces being dominant. 

This is an intrinsically interesting type of flow, which may be said to be generated 
by an ‘active ’ conserved scalar quantity. For definiteness we suppose that initially 
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the fluid is everywhere a t  rest, with the given distribution of density. The motion 
then develops by the action of gravity, and since the mean-square density fluctuation 
can only decrease one would expect an ultimate return to  a state of rest of uniform 
fluid. Buoyancy-generated random motion of this kind has a well-defined birth, lives 
for a time in which there is a burst of activity, and then presumably dies, partly in 
consequence of that activity. The source of energy of the motion is the potential 
energy in the initial state of rest, and the two molecular transport coefficients 
represent sinks. The expected return to rest may be slow however. For suppose that 
the advective mixing generates large-scale density variations on which buoyancy 
forces act to produce large-scale slow-interacting, slowly decaying components of the 
motion. What is the outcome of this process? Note that the source of potential 
energy is unlimited when the extent of the fluid in the vertical direction is unlimited. 

In this paper we try to elucidate the nature of random buoyancy-driven flow and 
to provide some numerical data which may be useful in various physical contexts. 
Our homogeneous buoyancy-driven flow field has been conceived as an idealized 
system, which, like its simpler relative, namely homogeneous turbulence in uniform 
fluid, may be useful as a vehicle for the general study of turbulence. We do not know 
of any attempt to  generate a homogeneous buoyancy-driven flow field in the 
laboratory, or of any relevant observational data. In  connection with possible 
applications, it should be noted that we are concerned here with situations in which 
the gradient of mean density is zero. The phenomenon of ‘fossil turbulence’ in the 
ocean (Gibson 1986), which involves residual velocity and density fluctuations in the 
presence of a negative vertical gradient of mean density, is thus different although 
no doubt there are connections. In  considerations of the rate of mixing, which here 
is affected by both molecular diffusion and buoyancy forces, the quantity of interest 
is likely to be the mean-square density fluctuation as a function of time. 

The parameters determining the motion generated from rest by buoyancy forces 
are easily enumerated. They are, firstly, the statistical parameters needed for the 
specification of the initial random spatial distribution of fluid density, assumed to be 
statistically homogeneous ; secondly, the two molecular transport coefficients, the 
kinematic viscosity of the fluid and the diffusivity of the conserved scalar quantity 
responsible for the spatial variation of fluid density ; and thirdly gravity. In order to 
have an initial state specified by a manageably small number of parameters, we shall 
later assume simple representative forms for the statistical properties of the initial 
spatial distribution of density. 

The principal specific objectives of our enquiry will be values of the mean-square 
density fluctuation and the mean-square velocity as functions of time measured from 
the instant a t  which the fluid is stationary, for different representative values of the 
governing dimensionless parameters. The case of large Reynolds number at which 
the flow is turbulent is of course of greatest interest, and many of our results are 
concerned with that case. The means of enquiry will be partly theoretical analysis 
and partly numerical simulation of the flow field. 

2. The governing equations 
The mass-conservation equation and the equation of motion for fluid of viscosity 

p, assumed uniform, are as follows: 

(2.1) 
aP -+u.vp+pv.u = 0, 
at 
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P (: -+u*vu ) = pg--Vp+pv2u, 

where p,  p and u are the fluid density, pressure and velocity. We suppose that density 
variations are small, relative to the absolute density, and are due to  the dependence 
of p on a conserved scalar intensive property of the fluid to be denoted by 4 (e.g. 
concentration). Thus we may write 

p = po+p’, 4 = 4 0 + $ ’ ,  

where po, 
the mean related by 

in which p is a constant dependent on the physical meaning of 4. With use of the 
familiar Boussinesq approximation that small density variations affect the flow only 
through the buoyancy force, (2.1) and (2.2) now become 

are uniform and constant mean values and p’, 4‘ are fluctuations about 

p’ = b4’> (2.3) 

v * u  = 0 ,  (2.4) 

where v = p/po. 

density may be written in terms of p’ as 
The equation expressing conservation of the scalar quantity that affects the 

where D is the diffusivity of the quantity of which 4 is the concentration. 
Equations (2.4)-(2.6) govern the life and death of our buoyancy-driven flow. At 

the initial instant, t = 0, the fluid is at rest and p’ is a stationary random function of 
position x with zero mean and other specified statistical properties. At subsequent 
instants, u,p’, and p - p o g - x  must be stationary random functions of x ,  since there 
is no agency capable of disturbing the statistical homogeneity. 

Our later numerical simulation of the flow field demands non-dimensional 
variables, and we shall make the transformation now. The explicit lengthscales in the 
flow system are those characterizing the initial distribution of p’ statistically. There 
may be many such lengths, and we select one of them, 1, say, for the purpose of 
forming dimensionless variables. ( I ,  might be, for example, the wavelength a t  which 
the initial spatial spectrum of p’ has its maximum.) A timescale may be constructed 
from 1, and g ,  but since the gravitational acceleration appears in equation (2.5) 
effectively only in combination with p’/po, the relevant timescale should be formed 
from lo and the product of g and some statistical measure of the magnitude of pf /po 
a t  t = 0 which we denote as 8, without specifying the precise meaning of B0 a t  this 
stage. 

We now define dimensionless variables (distinguished by capital letters) as follows : 

and 0 will be referred to as the dimensionless buoyancy. Equations (2.4)-(2.6) may 
then be written in dimensionless form as 

v .u=o,  (2.8) 
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au 1 -+ U - V U  = j 0 - V P + - V 2  U ,  
aT RO 

-+ u.v0 = -v2 0, 
i3T URO 
ao 1 

where j is the vertical (downwards) unit vector, and 

(2.9) 

(2.10) 

(2.11) 

Further dimensionless groups may be needed in the specification of the initial 
conditions. 
R, as defined above is a pseudo-Reynolds number formed from characteristic 

length and velocity scales a t  the initial instant, the velocity scale being that which 
makes the Froude number (in which g is modified by the magnitude of the density 
variations) equal to  unity ; alternatively R, can be regarded as proportional to  an 
initial Rayleigh (or Grashof) number to the power half. On the other hand, the 
Reynolds number of the flow field at time t ,  R, say, based on characteristic length and 
velocity scales of the fluid motion at time t ,  is a function o f t  which is zero at t = 0 
since the fluid is initially a t  rest. The value of this Reynolds number and the 
corresponding PBclet number rRt are important quantities because they indicate the 
current relative magnitude of the nonlinear terms and the viscous-diffusion terms in 
(2.9) and (2.10). 

3. Solutions of the linearized equations 
The scope for analytical deductions from the governing equations is limited, but 

there are useful exact solutions of the linearized equations which approximate to 
solutions of the full equations under certain conditions. 

3.1. 0 initially varies in one spatial direction only 
I n  this case 0 and U continue to  vary only in this direction, to which U is orthogonal, 
and so the nonlinear terms in (2.9) and (2.10) are identically zero. Thus, if 0 initially 
varies sinusoidally with non-dimensional wavenumber K (= kl,, where kl, = 271) and 
amplitude A ,  the solution to (2.8)-(2.10) is 

0 = A  exp (-$? sin K - X ,  

U = A  Kx’xK)*{exp(-$7-exp(-&3}sinK.X. K4 1 - U  (3.3) 

This solution shows that when T > 0 plane layers of heavy fluid normal to K slide 
downwards parallel to themselves without distortion and layers of light fluid slide 
upwards ; meanwhile the spatial variation of 0 is being smoothed out by diffusion, 
a t  a rate which is unaffected by the fluid motion. If the diffusivity is zero, a steady 
unidirectional motion in which gravity and viscous resistance are in balance is 
established asymptotically. If on the other hand the fluid viscosity is zero, the 
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motion generated by gravity is unresisted and another, different, steady state 
survives after the concentration variations have been eliminated by diffusion. If 
neither v nor D is zero, U+ 0 as T +a. The maximum magnitude of U occurs a t  

and is given by 

(3.4) 

The maximum value of the current Reynolds number R, for this case of a single 
Fourier component is evidently of order Ri. The mean-square fluctuations (02) and 
(&:)/R;, where U, is the vertical component of U and the angle brackets denote a 
volume average, derived from (3.1) and (3.3) are plotted in figure 1 as functions of 
T/R ,  for various values of u, for the case in which K is a horizontal veqtor with 
magnitude 27c and A = 2/2 (corresponding to  the choice 8, = (p’2/p:):-o). The 
maximum value of the dimensional spatial-mean-square velocity for given go, is of 
order k-4 and occurs a t  a dimensional time of order kP2,  where k is the dimensional 
wavenumber magnitude. The vertical buoyancy flux ( G O )  found from (3.1) and 
(3.3) shows that the coefficient of correlation of U, and 8 in this unidirectional flow 
has the notably high value of (5/6);,  = 0.91, for all values of T. 

As an illustration of magnitudes, take the case in which the root-mean-square 
of density fluctuations in water is 1 % of the mean density (so that 8, = 0.01) and 
1, = 2n/k = 1 cm, giving R, = 313; then, if u has the representative value 102-103 (in 
which case the factor containing u in (3.4) is close to  unity) and the wavenumber 
vector K is horizontal, Iq, = 11.1.  This corresponds to a maximum dimensional 
velocity of 34.8 cm/s. The corresponding Reynolds number of the flow of water with 
lengthscale 1 cm and velocity 34.8 cm/s is R, = 3480. It is perhaps surprising that 
seemingly small density fluctuations can generate a flow with moderately large 
Reynolds number; and much larger values are possible with larger values of 1, 
because the maximum of R, for given go,  is proportional to  1; .  

The solution can of course be generalized to an arbitrary initial dependence of 0 
on K. X by the addition of other Fourier components with wavenumbers parallel to 
K. But when there are two or more Fourier components with non-parallel 
wavenumbers in the initial Fourier representation of 0, the nonlinear terms in (2.9) 
and (2.10) are no longer zero (except a t  T = 0) ,  the different Fourier components 
interact, and superposition is no longer valid in general. 

3.2. Small values of R, and aR, 
I n  the case of an  evolving flow field containing eddies of different lengthscales it is 
difficult to forecast the values of T at which the nonlinear. terms in the governing 
equations are negligible. However, the nonlinear terms no doubt become negligible 
as R,+O,uRt+O for given T, and that is what we shall assume here, without 
concerning ourselves with the appropriate definition of R, or with prediction of the 
circumstances in which R, and aR, are small. The purpose of this subsection is simply 
to  examine the consequences of the nonlinear terms in (2.9) and (2.10) being small. 
At the very least the nonlinear terms will be negligible for sufficiently small values 
of T, because the fluid is stationary at T = 0. 

When the nonlinear terms in (2.9) and (2.10) are negligible, the different Fourier 
components of 0 and U behave independently and may be superimposed. The 
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FIGURE 1. Analytical results for a sinusoidal distribution of 0 and various values of 6: 
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behaviour of the Fourier component with wavenumber K is given by (3.1) and (3.3), 
and we may construct from these relations the corresponding expressions for the 
spectra of 8 and U. We define Y(K,~) and Otj(rc,t) as spectral densities in 
wavenumber space, that is, as three-dimensional Fourier transforms of the 
covariances ( @ ( X ) @ ( X + r ) )  and ( L $ ( X ) q ( X + r ) ) ,  where the angle brackets denote a 
volume average. It then follows from (3.1) that 

Y(K, T )  = Y(K,O) exp -- ( :;:) (3.5) 
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and (0,) = !J‘(K, T )  dK = lom G(K,  T )  dK = I,” G(K,  0) exp ( -KTdK,  (3.6) I aR0 

where G ( K , T )  is the integral of the buoyancy spectrum function over a spherical 
surface of radius K in wavenumber space. For simplicity we take the initial 
distribution of 0 to be statistically isotropic, in which case it remains isotropic for 
all T (in the linear range) and 

G(K,  T )  = 47cK2 Y(K, T ) .  (3.7) 

The velocity distribution is then statistically symmetrical about the vertical (X,) 
axis, and (3.3) shows that 

(3.8) 

There is a paradox associated with the exprcssion (3.8) for the mean-square 
velocity caused by gravity acting on a density distribution which has a continuous 
spectrum of superimposed non-interacting Fourier components. The relations (3.3) 
and (3.4) for a single Fourier component with wavenumber K show that the fluid 
velocity magnitude is zero initially and incrcases with T to a maximum which is 
proportional to  K-, after a time of order K-, before decreasing to zero. Thus, if the 
initial spectrum of the buoyancy distribution contains components with small 
wavenumber, the velocity of the fluid is correspondingly large. An attempt to  
calculate the velocity due to buoyancy forces acting on fluid whose density is a 
stationary random function of position with a continuous spectrum extending to  zero 
wavenumber may encounter a divergence if the calculation is based on the linearized 
equations, as (3.8) is. 

We see this explicitly by evaluating the integral in (3.8) asymptotically as T+m. 
The three-dimensional spectral density Y(K, T )  is in general an even function of K, 

and so we may write 

near K = 0, where C,, C,, . . . are constants determined by the initial generation of the 
density fluctuations, C, being the value of the three-dimensional spectral density 
Y(K, 0) at K = 0. Note from (3.5) and (3.7) that such an expansion for G at any non- 
zero value of T would likewise begin with the term 4xC0 K, ,  or if Co = 0 with the term 
4xC, K ~ .  As T + 00 the integral becomes dominated by small values of K ,  and 

G(K, 0) = 47cK2(c0 -k c, K2 + . . .) (3.9) 

(3.10) 

Thus as T+co the mean-square velocity fluctuation diverges as Ti  when C, + 0, 
because more and more of the small-wavenumber Fourier components develop a 
maximum velocity which increases as K-,. If however C, = 0, but C, + O ,  the 
asymptotic behaviour of (g) is as T-i. 

Use of the linearized equations thus leads to  a divergent mean-square velocity 
fluctuation as T+m when C, + 0, which is incompatible with neglect of the 
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nonlinear terms in the governing equations. And even when C, = 0 but C, =/= 0 it may 
be shown that there is the same inconsistency, because the lengthscale of the 
components making the major contribution to the kinetic energy and the density 
variance then increases as Tf and so leads to an indefinitely increasing current 
Reynolds number of the flow. We thus reach the surprising conclusion that, however 
small the initial density fluctuation may be, the linearized equations do not remain 
valid indefinitely if a t  least one of C, and C, is non-zero. Ultimately the nonlinear 
terms become significant. However, if both C, and C, are zero, the Reynolds number 
decreases and the linearized equations do remain self-consistent. 

The conclusion that (rr",)-co as T+co when C, =k 0 would of course be affected 
by the presence of walls bounding the fluid. If these walls have linear dimensions d ,  
no density components with lengthscales larger than d can be created a t  the initial 
instant. There is then a finite limit to the maximum velocity that can be generated 
in the fluid, according to the linearized equations, which may be seen from (3.4) to 
be proportional to d 2 .  However, a more interesting possibility is that  the divergence 
in the value of (rr",) is cut off by the effects of the nonlinear terms in (2.9) and (2.10), 
which become significant when R, and v€it arc no longer small. Later we shall 
describe a numerical simulation of the flow field intended to  throw light on these 
nonlinear effects. 

4. The large-scale components of 0 and U 
It has been seen that the asymptotic (T+co) behaviour of the flow field is 

determined, according to the linearized equations, by the form of the spectrum of 8 
a t  small wavenumber magnitude a t  T = 0 ,  the reason being that those small- 
wavenumber components of density fluctuation decay more slowly and generate 
larger fluid velocities. It is not obvious that this remains true when the nonlinear 
terms are retained in the governing equations. because the different Fourier 
components do not then develop buoyancy-driven motions independently and the 
effect of nonlinear transfer may be to hasten or hinder decay of the small- 
wavenumber components. However, it seems likely that these large-scale components 
play an important role in the asymptotic dynamics, especially if, as in the case of 
homogeneous turbulence in a uniform fluid, there are some invariant properties of 
the big eddies which relate the asymptotic behaviour of the flow field to its statistical 
properties at the initial instant. We therefore consider here the consequences of the 
full governing equations (2.8)-(2.10) for the Fourier components of 0 and U at  small 
wavenumber magnitudes. 

There are some existing results for the velocity spectrum of decaying homogeneous 
turbulence in fluid of uniform density which give us some guidance, two of the 
relevant references being Batchelor & Yroudman (1956) and Saffman (1967). Saffman 
pointed out that any homogeneous turbulent flow may be regarded as having been 
generated by an impulsive body forccf(X) per unit mass applied to the fluid at  some 
(virtual) initial instant. He showed that, if all integral moments of cumulants of the 
random force f exist, then so too do those of the fluid vorticity a t  the initial instant, 
and the velocity spectral tensor G i i ( ~ )  (the Fourier transform of the velocity 
covariance ( Q ( X )  V, (X+r) ) )  is of the following form at  small values of the 
wavenumber magnitude K a t  all later times: 
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where 8, is the unit second-rank tensor and the coefficient M,, is independent of T.  
Earlier, Batchelor & Proudman (1956) had supposed that the kind of homogeneous 
turbulence that is generated by placing a grid of bars across a uniform stream of fluid 
would be such that all integral moments of cumulants of the velocity converge at the 
initial instant; and they showed that for this kind of homogeneous turbulence the 
form of Qjl,(~) at small K is 

in which the coeficient Malkl is not independent of T in general. The relation between 
these two results was made clear by Saffman, who showed that the restriction on the 
velocity cumulants at the initial instant imposed by Batchelor & Proudman is 
equivalent to  requiring both that the impulsive body force f have convergent integral 
moments of cumulants and that it be a solenoidal function of position. 

Inasmuch as a gravitational body force acting on fluid of non-uniform density is 
not solenoidal in general, it seems likely that the asymptotic form of the velocity 
spectral tensor in our buoyancy-driven turbulence will resemble (4.1) ; although since 
the non-solenoidal body force here acts continuously, and not as an  impulse at the 
initial instant alone, we cannot expect the coefficient Map to be constant. 

Analogous results for the spectral density of the buoyancy force a t  small K may be 
obtained directly from the (full) governing equations. The expression for the rate of 
change of the mean of the product of @(A!) and O(X')  obtained from (2.10) is 

where Of ,  U' stand for O(X'),  U(X') and r = X'-X.  The three-dimensional Fourier 
transform of this relation is 

where V ( K ,  T )  is the Fourier transform of a third-order two-point product of U and 
0 which can be expected to  be regular at K = 0. This equation shows that the first 
time derivative of Y(K,  5") vanishes at K = 0, and it seems, from the form of the terms 
in the two rate-of-change equations (2.9) and (2.10), that the same is true of repeated 
time derivatives. 

We thus have the important result that the parameter C,  appearing in the relation 

lim Y(K,  T )  = C,, or G(K, T )  - 4xC, K~ for small K ,  (4.5) 
K + o  

is an invariant which takes for all T the value that is prescribed a t  the initial instant. 
This was obviously so in the period of validity of the linearized equations, and now 
we see it to  be true generally. An additional result which follows from the equation 
of motion (2.9) is that  there is a direct contribution to a@,/aT, representing the 
generation of motion on a scale 2 x / ~  due to  buoyancy, which in general is not small 
near K = 0, showing that the asymptotic form of Qji5 is of order KO for small K and is 
not constant, in line with our expectation above. 

The invariance of C, can be understood physically by adapting an argument used 
by Saffman (1967) to  show the invariance of the leading term in his expression for 
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the energy-spectrum tensor a t  small wavenumber magnitude in the case of 
homogeneous turbulence in fluid of uniform density. By definition of Y(K,  T) we have 

( O ( X ,  T )  O ( X +  r ,  T ) )  dr,  

(4.6) 

in view of the equivalence of ensemble mean values and spatial averages. Now each 
of these two integrals in the last line of (4.6) changes with time as a consequence of 
diffusion and convection of fluid mass across the surface bounding V ,  and since these 
are random processes with characteristic lengthscales small compared with F'; the 
rate of change of each integral is proportional to the square root of the area of this 
surface, that is, to V i ;  and so Y(0, T ) ,  = C,, is constant. This argument is applicable 
to the small-wavenumber limit of the spectrum of the amount per unit volume of any 
conserved quantity. The conserved quantity in Saffman's paper was fluid 
momentum, and here it is fluid mass. 

The possibility that  the initial conditions are such that C, = 0 should also be 
considered. Now the integral of (UO'O- V O ' O >  with respect to r over all space is 
clearly zero, showing that the Fourier transform V ( K ,  T )  (see (4.4.)) is zero a t  K = 0. 
It appears therefore that a contribution to Y(K, T) of order K ,  (and to G(K,  T) of order 
K ~ )  is generated by nonlinear dynamical processes. We have also reached this 
conclusion by expanding the Fourier coefficients of 0 and U in powers of T and 
supposing that the Fourier coefficients of 0 are normally distributed at T = 0 (which 
in fact coincides with the assumption made in our later numerical simulation) ; and 
this calculation provides the additional information that the contribution generated 
dynamically is essentially positive. Hence when C, = 0 the form of G(K, T) near 

(4.7) K = 0 is, in general, 

where C, depends on T .  Note that there is no reason to expect the contribution to 
Y(K, T) of order K~ that is generated dynamically to be isotropic, even when Y(K, 0) 
is. 

The order of magnitude of GU(x, T) at small K is also different when C, = 0. The 
direct contribution to aG,/aT due to the generation of motion by buoyancy forces 
is the Fourier transform of 

and the value of each of these two Fourier transforms at  K = 0 may be written as the 
product of two integrals in the manner of (4.6). But (4.6) shows that when C ,  = 0 

G ( K ,  7') 'V 4Kc, K 4 ,  

j i  (OU;)  +jj ( O ' U ) ,  (4.8) 

lim {&Jv O ( X ,  T) dX} = 0, 
V-m v y  

(4.9) 

and hence the contribution to aQij/dT due to the generation of motion by buoyancy 
forces is also zero a t  K = 0. The spherically integrated energy spectrum 

E ( K ,  T) = - Gij(K) dA(K) 2 's (4.10) 

can be expanded as a power series in K', and when C, = 0 its form near K = 0 is thus 

E ( K ,  T )  OC K 4 ,  (4.11) 
in which the constant of proportionality depends on T .  
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G ( K ,  0 )  G(K,  T) E(K,  T) 
47Cc0 K2 47Cc, K 2  - K2 

4KC2 K4 N K4 N K4 

47CC K2(n+l) N K4 N K4 2n 

( n >  1) 
TABLE 1. Asymptotic forms of the functions G(K,  T) and E(K,  T) as K + O  for a given initial form 

of G(K, T).  Only the coefficient C, is constant. 

Table 1 shows the various results obtained above for the asymptotic forms, as 
K + 0, of the directionally integrated spectra of buoyancy and velocity. 

An asymptotic similarity state 

The results of $93 and 4 taken together point strongly to the existence of an 
interesting and unexpected similarity state of the flow field as T +a, for those initial 
conditions for which the constant C, defined in (4.5) is non-zero. 

We saw in $3.2 that  as T increases from zero the fluid velocity increases from zero 
and, provided the velocity remains so small that  the nonlinear terms in the governing 
equations are negligible, the flow field becomes dominated by the large-scale Fourier 
components of 0, these being the slowest to  decay and the most effective in 
generating motion due to gravity. The product of the root-mean-square velocity and 
the lengthscale of the energy-containing eddies was found to increase indefinitely 
provided at least one of the constants C,  and C, in (3.9) is non-zero, according to  the 
linearized equations, so it is inevitable that nonlinear terms ultimately become 
significant. The effects of viscosity and diffusion are then supplemented and replaced 
by nonlinear transfer processes which are difficult to  treat analytically, but i t  is a 
reasonable supposition that, as in the linear regime, the values of (0,) and (IT) 
become dominated by Fourier components with wavenumbers near K = 0. The 
influence of the initial conditions on the flow field is thus ultimately confined to the 
parameters specifying the form of ! P ( K , O )  near K = 0, that is, to the parameter C, 
which is an invariant of the motion. The flow field depends asymptotically (T+co) 
only on T and C,;  and not on R, and u, because, as will be seen, R, increases 
indefinitely in the nonlinear regime also. 

Dimensional analysis now enables us to  determine the similarity laws giving the 
statistical parameters of the flow field as powers of T in the asymptotic state. It will 
be recalled that all our variables are non-dimensional, and were made so using two 
unspecified dimensional parameters 1, and go, characteristic of the initial state. I n  the 
asymptotic state only one parameter of the initial conditions is relevant, namely the 
parameter C, defined in (4.5), of which the dimensional form is 

c, = 82 e; 1; c,. (4.12) 

We therefore choose g o o  to be (c,/l$, so that C,  = 1 (as it should be when parameters 
are made dimensionless using c,  and t ) ,  and the power-law dependences of the various 
statistical parameters on T must now be such that 1, cancels from their dimensional 
forms. In this way we find 

g2(pf2/p;) OZ c ! t - y  (u2) cc c i t - t ,  1, K c i t t  (4.13) 

in the asymptotic state, where 1, is the (dimensional) characteristic lengthscale of the 
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current distributions of 0 and U .  The corresponding relations in terms of non- 
dimensional variables are 

(Q2) cc T - y ,  ( V )  K T-; ,  L, cc T i ,  (4.14) 

and each of the spectral densities G ( K :  T) and E ( K ,  T) is a self-similar function of K a t  
different times, with lengthscales which vary as Tb, that  is 

G ( K ,  T )  = T - t 6 ( 2 ) ,  E ( K ,  T )  = Ti&(;), 2 = T ~ K .  (4.15) 

The paradox of an ever-increasing mean-square velocity that we encountered in 53.2 
for the case in which G ( K ,  0) is of order K~ and the motion is governed by the linearized 
equations thus no longer occurs when the nonlinear interaction of Fourier 
components is allowed for, but a vestige of the paradox survives inasmuch as the 
current Reynolds number increases indefinitcly as Tg. 

Evidence for the existence of this asymptotic similarity state from a numerical 
simulation of the flow field will be presented later. 

I n  the case when the initial conditions are such that C,, = 0, G ( K , ~ )  behaves as 
4nC2 K~ for small K ,  where C, is in general a function of T .  It seems that there is here 
no invariant quantity on which to base an asymptotic similarity state. However, our 
numerical simulation indicates unexpectedly, that another similarity state with 
increasing current Reynolds number of the turbulence is established asymptotically, 
a t  least approximately. 

5. Numerical simulation of the flow field 
Our numerical simulations of equations (2.4)-( 2.6) have been performed using a 

pseudo-spectral code for homogeneous turbulence developed by Rogallo ( 1981). The 
spatial derivatives of the velocity and density fields are computed in wavenumber 
space whereas the bilinear products in the convective terms are computed in physical 
space through use of fast Fourier transforms. The aliasing errors which result are 
removed by masking and phase-shifting the fields. The fields are time-advanced in 
wavenumber space and the time-stepping scheme used is second-order Rung- 
Kutta. Viscous and diffusive terms are treated by use of an integrating factor. 
A fixed time step At, chosen sufficiently small to reproduce accurately the analytical 
results of the linear analysis, is used to generate initial velocity fluctuations, after 
which smaller values of At, required by the nonlinear terms, are determined by 
equating to unity the Courant number Urn,, AtlAx, where Urn,, is the maximum over 
all grid points of the sum of the absolute values of the three velocity components, and 
Ax is the distance between grid points. 

A representation of the velocity and density fields in Fourier space is achieved by 
assuming the fields to be periodic with periodicity length 2n. This results in a discrete 
wavenumber spectrum with each component of the computational wavenumber 
taking the values 0, f 1, f 2 ,  ... , f (13- l ) ,  where N is the number of grid points in 
each of the three directions. The value ofN3 is usually called the resolution of the 
simulation. Eliminating the aliasing errors in the Rogallo code further restricts the 
computational wavenumber to B magnitude less than (~'2/3)N. The simulations 
presented here are of resolution 643 or 1283. A complete simulation of the birth and 
death of high-Reynolds-number buoyancy-generated turbulence with resolution 
1283 takes on the order of 15 cpu hours on a single processor of a Cray-YMP, whereas 
a 643 simulation takes on the order of 1 cpu hour. 
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5.1. The initial conditions 

The statistical properties of the density field are assumed to be homogeneous and 
isotropic a t  the initial instant, and the fluid is stationary, so the initial conditions of 
our flow field may be completely determined statistically by the initial buoyancy 
spectrum G(K, 0), defined in (3.6). The individual Fourier components of the initial 
buoyancy field are given by 

whcre w, is a number between 0 and 1 chosen a t  random for each wavenumber K 

under the constraint that  change of sign of K gives the complex conjugate, as 
required by the reality of the density field. To obtain accurate statistics from this 
particular realization of the density field, a sufficiently large sample of Fourier 
components must be excited initially. 

The initial conditions may result in the introduction of dimensionless groups 
additional to those specified in (2.11). For simplicity we keep these additional groups 
to a minimum. Tn particular, no new dimensionless groups are needed if G(K, 0 )  can 
be completely specified in terms of the lengthscale I ,  and the statistical measure of 
the magnitude of the fluctuations in the buoyancy, go, ,  these being the two 
dimensional quantities used in the non-dimensionalization (2.7). However, we have 
seen in $4  that the power-law dependence of G(K, 0) on K at small K plays a crucial role 
in the behaviour of the flow a t  large times. Accordingly, we take as our initial 
buoyancy spectrum 

G(K,O) = 2 - exp [ - & ~ ( ~ / 2 x ) ~ ] ,  (5.1) 

which has been chosen so that G(K,O) has a maximum a t  K = 2x. Furthermore, 
the normalization constant A ,  is chosen so that the root-mean-square density 
fluctuation a t  T = 0 is unity: 

A 2x {Kr  2x 

Clearly (5.1) introduces a single additional (non-dimensional) parameter to  the 
problem, namely n, the power-law exponent of G(K,O) as K + O .  In the limit of very 
large n, this additional parameter becomes irrelevant and (5.1) becomes 

G(K,O) = 8(K-b),  (5.3) 
whcre 6 is the Dirac delta-function. 

5.2. Subgrid modelling 
The largest simulations presented here, those with 12€i3 resolution, resolve a span of 
wavenumber magnitudes between unity and 60. Such a range of resolvable scale sizes 
restricts exact numerical solution of the fundamental equations by a direct numerical 
simulation to low Reynolds and PBclet numbers, where there are only narrow ranges 
of dynamically interacting velocity and density scales. However, for flows a t  high 
Reynolds or P6clet numbers scales may be excited which are smaller than those 
represented in the simulation, and the effect of these scales on the computationally 
resolved scales must be modelled by a subgrid model. The use of a good subgrid 
model in principle allows accurate statistics to be obtained from a large-eddy 
simulation for arbitrary Reynolds and PBclet numbers. 
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Simulations performed here with both R, and crR, greater than a few hundred 
require a subgrid model for both the velocity and density fields. A minimum 
requirement of any subgrid model is to remove the excess energy and density- 
variance which accumulate a t  the smallest resolved scales of the simulation. If this 
excess energy and density-variance is not removed, then the solution of the 
truncated Fourier series representing the turbulent fields will tend towards an 
equilibrium equipartition spectrum rather than the desired turbulent solution. 
However, a good subgrid model should do more than just remove the excess energy 
and density-variance. It should attempt to model the interactions which actually 
occur between the subgrid scales and the resolved scales. The introduction of a 
subgrid model into a simulation is always somewhat ad hoc, so that confidence in a 
statistical result obtained from large-eddy simulation depends on whether the 
particular result is robust to  small changes in the subgrid model. 

The large-eddy simulations presented here were performed using a well-known 
spectral eddy-viscosity and eddy-diffusivity subgrid model (see Kraichnan 1976 ; 
Chollet & Lesieur 1981 ; Chollet 1985 ; Lesieur & Rogallo 1989) to remove energy and 
density-variance from the resolved scales. For the eddy viscosity and eddy diffusivity 
we adopt, respectively, 

V e ( K  I K,, T )  = {0.145+5.01 eXp [ - 3 . 0 3 ( K m / K ) ] )  [ E ( K , ,  T ) / K , $  (5.4) 

and D e ( K I K , ,  T )  = V e ( K l K m ,  T ) / a e ,  (5.5) 
where K, is the maximum wavenumber magnitude of the simulation and ve is an 
eddy Schmidt number, assumed here to be constant and equal to 0.6. The eddy 
viscosity (5.4) differs slightly from that used most recently by Lesieur & Rogallo in 
that it has been resealed to coincide with a Kolmogorov inertial-subrange constant 
equal to  2.1, as computed by Chasnov (1991). 

Simulations were performed to determine the sensitivity of our high-Reynolds- 
number results to the above subgrid model by varying the range of wavenumbers 
between the peak of the initial density spectrum and the maximum resolved 
wavenumber of the simulation. We found that the eddy-viscosity and eddy- 
diffusivity plateau 0.145 in (5.4) tended to overdamp the flow fields a t  early times, 
so that for the simulations with G(K,O)  = S ( ~ - 2 2 7 ~ )  presented in $6  the eddy- 
viscosity and eddy-diffusivity plateau 0.145 in (5.4) was set to zero, whereas the cusp 
contribution 5.01 was unchanged. This modified subgrid model then simply removes 
the excess energy and density-variance which accumulates a t  the largest wave- 
numbers of the simulation without appreciably affecting Fourier components a t  
lower wavenumbers. We believe that use of this modified subgrid model yields the 
most accurate results for the maximum mean-square velocity fluctuation generated 
in the fluid. The complete eddy-viscosity and eddy-diffusivity subgrid model is 
employed for the simulation of the decay of velocity fluctuations in $7 .  There we are 
interested in the long-time behaviour of the flow, so that the plateau represents an  
important physical effect. 

Furthermore, we note that use of a modified eddy-viscosity model with stochastic 
backscatter (Chasnov 1991) did not appreciably affect the statistics of interest to  us 
here. We should note also that although the spectral eddy-viscosity and -diffusivity 
model given by (5.4) and (5.5) was developed for isotropic turbulence, we have used 
it to simulate axisymmetric turbulence, and this may result in additional errors. The 
same form of the eddy-viscosity and -diffusivity model has been used for a large-eddy 
simulation of a homogeneous axisymmetric stratified flow by M6tais & Chollet 
( 1989). 
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FIGURE 2. Visualization of the numerically calculated dimensionless buoyancy 8 (X)  at four different 
times in the flow evolution for R,, uRo+ 01 and G(~,0)=8 (K-2n). Blue represents heavier fluid whereas 
red represents lighter fluid. Only three sides of the periodic computational box are shown, and gravity is in 
the vertical (downwards) direction. The buoyancy scale gives the numerical values of @(X) .  (a) T=O, 
(b) T=0.8, (c) T=1.2, (d) T=2.0. 

BATCHELOR, CANUTO & CHASNOV (Fucing p .  363) 
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Finally, we note that the simulations performed at values of R, and uR, of a few 
hundred or less are essentially fully resolved, and that the statistics obtained from 
these direct numerical simulations already demonstrate trends which are smoothly 
continued as we increase R, and uR, to values where the subgrid model begins to  
remove substantial energy and scalar variance from the resolved scales. 

5.3. Visualization of the density distribution 
Figure 2 (plate 1) shows visually the numerically calculated dimensionless buoyancy 
@(A') a t  four different times in the flow evolution for the case R,,c~R,+co and 
G(K, 0) = &(~-22n). The gravitational force causes the denser fluid (blue) to fall and the 
less dense fluid (red) to rise. Only three sides of the periodic computational box are 
shown on the colour plate. The random density distribution a t  T = 0 subsequently 
results in a random motion of the fluid (T = 0.8), and in the development of more 
complicated plume-like structures (T = 1.2). At even later times (T = 2.0), 
substantial mixing of the initial density fluctuations is observed to occur. Although 
flow visualization does not yield quantitative statistical results, it may be worthwhile 
to try to identify some of the features present in the numerical simulation a t  times 
within the similarity range, especially those in the velocity field. Unfortunately, 
present circumstances require us to postpone such a study to a later date. 

6. Numerical results for an initial density spectrum characterized by a 
single length 

We present here some quantitative results for the initial density spectrum 
G(K,O) = &(~-22n). This initial spectrum can be reasonably approximated by (5.1) 
with n = 64. I n  performing the numerical simulation, the maximum of the initial 
density spectrum occurs a t  a computational wavenumber magnitude k ,  = 8 (so that 
1, = 27c/k, is used to non-dimensionalize the computational results). This choice of k ,  
was based on two conflicting requirements : that  adverse effects of subgrid modelling 
be limited, implying a value of k ,  as small as possible, and that the imposed 
periodicity length be much larger than any integral scale of the flow, implying a 
value of k, as large as possible. The latter requirement also restricts the time 
integration to relatively short times. 

Our simulations are for various values of the pseudo-Reynolds number R, and for 
Schmidt numbers u = 0.1, 1.0, and 10.0. The results for (02) and (V) ( =  (U. U)), 
computed from the grid-scale fluctuations as functions of time for u = 1.0 and for R, 
varying from 32 to 00, are shown in figure 3.  The density variance (e2) versus T 
approaches a universal curve asymptotically as R, +co (figure 3a) .  At large values of 
R,, (02) is conserved for small times, after which it rapidly cascades to the subgrid 
scales where it is diminished by molecular diffusion. The time 7 required for ( e2) to 
fall to  0.05 of its initial value a t  large R, is found to be 7 = 3.1, and the dimensional 
form of this useful measure of mixing time is 

where I ,  is the wavelength characteristic of the initial Fourier components. The 
maximum value attained by the mean-square velocity of the fluid (( V),) is observed 
to  increase monotonically with increasing R, and to approach 1.2 asymptotically at 
a time T, = 1.8 (figure 3b) .  This is in striking contrast to the solutions of the 
linearized equations in $3, where it was shown that (V), grows indefinitely like R: 
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FIGURE 3. Kumerical results for the isotropic initial buoyancy spectrum G(K,O) = I ~ ( K - ~ x ) ,  for 

(T = 1.0 and various values of R,: ( a )  (02) vs, T ,  ( b )  ( U Z )  us. T. 

with increasing R,. Our asymptotic result provides the following estimate for the 
dimensional maximum mean-square vclocity fluctuation attained in a high- 
Reynolds-number buoyancy-driven flow : 

As we have stated (02) and ( U )  are computed only from the grid-scale 
fluctuations, omitting contributions from the subgrid-scale fluctuations. Examin- 
ation of the energy and buoyancy spectra at large Reynolds numbers (see figures 
9-11) indicate that the subgrid contributions to (GR) may indeed be neglected so 
that (6.2) is a reliable estimate of the maximum mean-square velocity attained by 
the fluid. However, owing to a rather slow decrease in the buoyancy spectrum at 



Homogeneous buoyancy-generated turbulence 

I I 
I I 

5 t  

365 

10' 

Ro 
FIGURE 4. The time T at which ( W )  falls to 0.05 of its initial value as a function of R, for 

CT = 0.1, 1.0 and 10.0. The dashed lines are the solutions of the linear equations. 
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FIGURE 5. The maximum value of (V) as a function of R, for (T = 0.1, 1.0 and 10.0. The 

dashed lines are the solutions of the linear equations. 

large wavenumber magnitudes, the subgrid contributions to  (02) may not be 
negligible so that the mixing time (6.1) should be considered to be only approximate. 
We expect the inclusion of subgrid-scale fluctuations to result in somewhat longer 
mixing times. 

Further results for the Prandtl (or Schmidt) number v equal to 0.1, 1.0, and 10.0 
are displayed in figures 4 and 5 .  The dashed lines are the solutions of the linear 
equations found in 93. I n  figure 4, we plot as a function of R, the time required for 
(02) to fall to 0.05 of its initial value, while in figure 5 we plot as a function of R, 
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the maximum value attained by (V). For sufficiently small values of R, the linear 
solutions are recovered, and for sufficiently large values of R, the simulation results 
for all the different values of u eventually approach the asymptotic results discussed 
above. In  particular, the estimates (6.1) and (6.2) become independent of u for 
sufficiently large values of R,. However, for the asymptotic results to be attained, a 
larger value ofR, is required for the smallest value of u simulated (u = 0.1) since both 
the viscous and diffusive sinks of energy must be negligible over a wide range of 
inertial wavenumbers. The strength of these sinks depends on the inverses of the 
Reynolds number R, and PBclet number uR, respectively, so that both R, and vR, 
must be large; and since CTR, =4 R, when the Schmidt number is much less than 
unity, larger values of R, are required as c approaches zero. 

The results for the mixing time 7 presented in figure 4 for u = 10.0 deserve 
additional comment. The time required for mixing no longer increases monotonically 
with increasing R,. There now exists a distinct maximum in the mixing time 7 near 
R, = 32. It appears that  near this value of R,, turbulent mixing of the large-scale 
density fluctuations becomes important relative to the weak direct effects of 
molecular diffusion ; and as R, increases further. the asymptotic R +a result is 
approached from above. 

It is of interest to determine the effect of varying the width of the spherical shell 
in which the initial density spectrum is non-zero. Accordingly, we have performed 
additional simulations withR,, uR,+oo, and with n varying from 2 to 64 in (5.1). In 
figure 6, we plot the time evolution of (0') and (U).  As n increases from 2 to 64, 
the effect on the evolution of (02) is small and the maximum value attained by (VZ) 
increases only by 10%. However, any increase of (V), with increasing n may be 
regarded as surprising in the light of our earlier results in $3, where we showed that, 
for an initial sinusoidal distribution of 0 with wavenumber magnitude K ,  (V) 
increases to a maximum value proportional to K - ~  before decreasing to zero. For 
small values of n, many more Fourier components a t  small K arc excited so that one 
na'ively expects a corresponding increase in (U-). In fact, solution of the linearized 
equations in $3.2 showed that (V) diverges as T + a  for the particular case n = 2. 
I n  the simulation such a divergence is seen to bc climinated by nonlinear effects. 
Furthermore, the unexpected increase in the maximum values of (V) with 
increasing n can be understood upon realizing that the time required for the 
individual Fourier components of the velocity field to reach their maximum 
magnitude is proportional to K P ,  so that nonlinear effects already result in a decrease 
in (UZ) before the growth in the low-wavenumber Fourier components dominates. 
This is evident from figure 6 ( b ) ,  where, for example. (U)  for n = 2 does eventually 
become larger than (V) for n = 4. 

7. Numerical results for the asymptotic state of the flow field 
I n  this section, we explore the consequences of different initial large-scale density 

fields on the long-time behaviour of the flow. We have already seen in $$3 and 4 that  
different power-law forms for G ( K ,  0 )  at small K can lead to very different behaviour 
of the flow as T +a. Furthermore, the results of those sections strongly suggest the 
existence of an asymptotic similarity state for the particular initial density spectrum 
given by n = 2 in (5.1). One of the consequences of this asymptotic similarity state 
is that the current Reynolds number of the flow R, increases indefinitely in time. We 
are interested in the simulation results for asymptotically large times and this 
presents difficulties for a direct numerical simulation. Accordingly, we have 
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FIGURE 6. Effect of varying the width of the initial density spectrum by varying n in (5.1), 
for R,, UR, +co : (a) ( W )  vs. T ,  ( b )  (Up) us. T .  

performed large-eddy simulations with R,, aR, +co with resolution 1283 and the 
maximum of the density spectrum occurring a t  a computational wavenumber 
magnitude of k, = 50. However, as discussed in $6, the choice of such a large value 
for Ic, in the simulation can lead to erroneous results. In  particular, an overdamping 
of the fields by the subgrid model occurs over the times a t  which the turbulent 
velocity of the fluid increases. This overdamping leads to an underestimation of the 
maximum mean-square velocity of the fluid. However, this need not concern us 
unduly here since accurate statistical results for the maximum mean-square 
velocities have already been obtained in $6 and, more importantly, the similarity 
properties a t  large times should not be altered by an overdamping of the fields at 
early times. 
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FIGURE 7 .  Time evolution of the anisotropy factor y for G(K,  0) given by (5.1) 

with n = 2, 4 and 8. 

As a measure of the large-scale anisotropy of the velocity field a t  large values of 
T, we plot in figure 7 the time evolution of the parameter 

The linearized equations predict a value for y equal to eight (see (3.8)), whereas 
isotropic turbulence would have y equal to  unity. Asymptotically as T + w ,  we find 
that y is approximately 2.8 for n = 2, whereas y is approximately 2.4 for n = 4 and 
8. Thus, the velocity field in the final period of decay is more isotropic than that 
determined by the ,linearized equations, yet still remains far from isotropy even 
though the flow becomes quite turbulent. The difference in the asymptotic values of 
y for different n is evidently a consequence of the differing degrees of isotropy of the 
large-scale density fields. For n = 2, the leading term in the expansion of Y(K, 5") in 
powers of K is necessarily isotropic for all T ,  whereas for n = 4 and 8, the leading term 
is determined by anisotropic nonlinear interactions. Note that the approach of y to  
a constant a t  large times for each value of n provides the first direct evidence of the 
existence of an asymptotic similarity state at large times. 

I n  figure 8, the time evolution of (O'), <U), and L, in the three cases n = 2,4, and 
8 is presented. The non-dimensional current lengthscale L, is taken to  be 
representative of the scales making up the maximum contribution to (0') a t  time 
T and is defined as 

L, = BnB, (@')-I K - ~  G(K,  T )  dK. (7.2) r 
Here B, is chosen so that L, = 1 a t  T = 0, whence 

2(+?2)tn 
A,(+ l ) !  

B, = (7.3) 

and A ,  is given by (5.2). The main results of interest are the power-law functional 
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FIGURE 8. Numerical results for the asymptotic similarity state when R,, vR, +CO and G(K, 0) is 
given by (5.1) with n = 2, 4, and 8 :  (a) (B2)  us. T, ( b )  (VZ) us. T, ( c )  L, us. T. The slopes found 
theoretically for n = 2 and empirically for n = 4, 8 are shown for comparison as broken lines. 
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FIGURE 9. Evolution from T = 0 to 15 of the density and energy spectra when R,, uR,+a, and 
G(K, 0) is given by (5.1) with TZ = 2 :  (a) G(K,  T) us. K ,  ( b )  E(K,  T) us. K .  

K 

forms in the asymptotic similarity state. The theoretical results obtained in $4 for 
n = 2 are plotted in figure 8 alongside the simulation results, and the slopes are seen 
to be in reasonable agreement. We have also plotted suggested asymptotic power 
laws alongside the simulation results for n = 4 and 8. Further discussion of these 
empirical asymptotic power laws will be found below. 

The. time evolution of the density spectrum G ( K ,  T) and the energy spectrum 
E(K,  T), defined in (4.10), for n = 2 is shown in figure 9. As is immediately evident from 
the graph of G(K, T) (figure 9 a ) ,  the theoretical prediction that C, in (4.5) is constant 
is well obeyed by the numerical simulation spectrum. As explained in $4, the 
invariance of C, gives rise to the asymptotic similarity relations for n = 2 shown in 
figure 8. 
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FIGURE 10. Evolution from T = 0 to 30 of the density and energy spectra when R,, uR, +co 
and G ( K , ~ )  is given by (5.1) with n = 4 :  (a)  G(K, 2') vs. K ,  ( b )  E(K,  T) ws. K .  

The time evolution of the spectra for n = 4 and 8 is shown in figure 10 and 11, 
respectively. We observe the development of a K~ form for G ( K , T )  a t  small K as 
predicted in $4. The coefficient in this  spectrum, namely 

C, = lim G(K,  T ) / ~ R K ~ ,  
C+O 

(7.4) 

is not invariant according to the theory in $4, unlike the coefficient Co, and changes 
in its value a t  early times are evident in figures 10 (a)  and 11 (a).  For later times, 
however, C, is observed to  vary much more slowly with time. 

The near invariance of the coefficient C, a t  later times raises the question whether 
there exists an 'empirical' asymptotic similarity state when n 3 4. If we assume C, 
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FIQURE 11. As for figure 10 but with TZ. = 8. 

to be invariant in this asymptotic similarity state, and further assume it to be the 
only parameter needed to determine the flow, we find analogously to the scaling of 
(4.14) 

( W )  cc T-Y, (V) cc T-J ,  L, cc Tt.  (7.5) 

These asymptotic relations have been plotted alongside the results of the simulations 
for n = 4 and 8 in figure 8 and the slopes are seen to be in reasonable agreement. 

The asymptotic relations (7.5) can be used to obtain asymptotic similarity forms 
for the density and energy spectra which are analogous to those in (4.15). Defining 
these similarity functions by d(k)  and E ( k ) ,  we obtain for n 2 4 

G(K,  T )  = T - y d ( k ) ,  E(K,  T) = T-+,!?(k), k = T ~ K .  (7.6) 



Homogeneous buoyancy-generated turbulence 373 

5 

T:G 

I I I I I I I I I  I I I l l  

1 10 70 

3 x  

TEE 

lo-' 

1 0-2 

I I I I I l l / /  I I I l l  

1 10 70 

T S K  
FIGURE 12. As for figure 9 (in which TZ = 2) but with T = 9 to 15 and the spectra rescaled 

according to the theoretical asymptotic similarity relations (4.15). 

The spectra for n = 2 and 4 have been rescaled at the later times of the simulations 
according to (4.15) and (7.6) and are plotted in figures 12 and 13, respectively. A 
reasonable collapse of the spectra is observed for wavenumber magnitudes lying in 
the range containing most of the energy and density-variance. 

It seems therefore that the approximate invariance of C, at large times when 
C,, = 0 is accompanied by a similarity state, and that this state is different from that 
for n = 2. We have not been able to find a physical interpretation of the approximate 
invariance of C,. 

Finally, we note the approximate power-law forms of the spectra at large 
wavenumber magnitudes in figures 9-1 1. In  all the simulations, the density spectra 
G ( K , T )  are slightly less steep than K - ~  at large K .  A K-'-spectrum at large K for a 
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FIGURE 13. As for figure 10 (in which n = 4) but with T = 15 to 30 and the spectra rescaled 

according to the empirical asymptotic similarity relations (7.6). 

passive scalar field in isotropic turbulence was previously found numerically by 
Lesieur & Rogallo (1989), although it is unclear if our buoyancy-generated turbulence 
results are related. The power-law behaviour of the energy spectra is less distinct, but 
appears to be slightly greater than K - ~  immediately after the energy peak, and bends 
closer to for scales near the cutoff wavenumber. However, the limited range of 
scale sizes available to our 1283 numerical simulations makes speculative any 
conclusions concerning these small-scale spectra. Additional analytical and numerical 
study is required, and we leave this for future work. 
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8. A model for the turbulent transport processes 
We have found herein an analytical representation of both the initial growth and 

the final decay of velocity fluctuations in homogeneous buoyancy-generated 
turbulence by means of a linear analysis of the fundamental equations and the 
discovery of asymptotic similarity states, respectively. Results of the numerical 
simulations have confirmed the validity of these analytical representations a t  small 
and large times. However, we still have no analytical representation for the results 
of the numerical simulations a t  intermediate times, in particular a t  times near that 
at which the mean-square velocity fluctuation attains a maximum value when Ro is 
large. We show here that a rough analytical representation of this feature of the flow 
can be obtained by modelling the turbulent transport of kinetic energy and density- 
variance from large to small scales. 

From the governing equations in dimensional form, (2.4), (2.5) and (2.6), we find 

when u and p’ are statistically homogeneous. Now a t  large Reynolds numbers the 
length scales a t  which molecular dissipation occurs are much smaller than the scale 
1, of the energy-containing eddies, and these small-scale components of u and p’ exist 
solely as a consequence of nonlinear transfer of kinetic energy and density-variance 
from the large scales near I,. A widely tested expression for the rate at which kinetic 
energy is transferred to smaller scales is a(u2)i/lt, where +(u2) is the kinetic energy 
per unit mass associated with scales near 1, and a is a positive constant not far from 
unity (Batchelor 1953, $6.1). Provided this transfer of energy is rapid, a(u2)i/l, must 
also be the instantaneous rate a t  which energy is being lost from the small scales by 
viscous dissipation, whence (8.1) can be written as 

The analogous expression for the rate a t  which density-variance is being 
transferred by nonlinear convection processes from scales near I, to small scales is 
p(u2)i(p‘2)/1t, whence by similar arguments we may rewrite (8.2) as 

where $ is another constant of order unity. 

component of velocity, us, defined by 
We also introduce 5, the coefficient of correlation between p’ and the vertical 

(p’ us) = 5(p’2)i (u$, (8.5) 

and the factory, a measure of the anisotropy of the energy-containing eddies, defined 
in (7.1). For a flow field resulting from an initially isotropic density distribution, the 
initial values of 5 and y are (5/6)1 and 8, respectively. At later times, after the flow 
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has become turbulent, the values of 5 and y may both be expected to be smaller 
because the fluid velocity is less closely controlled by gravity when inertia forces are 
strong. 

Equation (8.3) thus becomes 

where 6 = 5yjyf/(2+ y);. If now we make the convenient approximations that the 
factor 6 and the lengthscale 1, of the eddies making the main contributions to (u2)  
and ( F ‘ ~ )  are both constant, we may eliminate (p”):  from (8.4) and (8.6) to obtain 

d2(u2); u+$d(u2) up 
dt2 I, dt I, 

+-- +T (?A”>” = 0, 

with initial conditions 

the second condition being determined directly from (8.6). 
Remarkably, (8.7) and (8.8) admit the analytical solution 

provided that alp, which may be seen from (8.3) and (8.4) to be a kind of turbulent 
Schmidt number, has either of the values 1 or a. The corresponding expression for 
( P ’ ~ )  is 

(8.10) 

I n  terms of the dimensionless variables defined in $2, (8.9) and (8.10) become 

(8.11) 

From (8.1 l ) ,  we find the maximum mean-square velocity attained by the fluid and 
the time a t  which i t  occurs to be 

(8.12) 

Assuming 6 = (2/3)i as for a viscous-dominated flow field, and u = p, the model is 
compatible with the numerical simulation result T, = 1.8 found in $6 if 01 = p = 0.76. 
The corresponding model value for (VZ), is 0.54, about a factor of two less than the 
numerical simulation result 1.2, and the dimensionless mixing time 7 defined in $6  is 
3.3 whereas the simulation gives 3.1. 

The two model relations in (8.11) with the reasonable parameter values 
a = p = 0.76 and 6 = (2/3)i are plotted in figure 14, and are compared there with the 
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FIGURE 14. Comparison of the results of the numerical simulation for R,, cR,, +oo and 
G(K,O) = S(~-211) (see $6) with those given by the model equation (8.7). 

T 

results of thc numerical simulation for large R, described in $6. The correspondence 
is acceptablc qualitatively, and suggests that our representation of the turbulent 
transport processes in the model may be adequate for some approximate purposes. 
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